

# INDUKSI KUAT

Dr. Rippi Maya, M.Pd.

Pertemuan ke-3

# INDUKSI KUAT

### **Prinsip Induksi Kuat**

Misal P(n) adalah pernyataan tentang bilangan bulat. Akan dibuktikan P(n) benar untuk semua bilangan bulat  $n \ge n_0$ . Untuk membuktikan cukup ditunjukkan:

- 1.  $P(n_0)$  benar
- 2. Jika  $P(n_0)$ ,  $P(n_0+1)$ , ..., P(n) benar maka P(n+1) juga benar untuk semua bil. Bulat  $n \ge n_{0}$ , sehingga P(n) benar untuk semua bil. bulat  $n \ge n_{0}$ .

# Contoh:

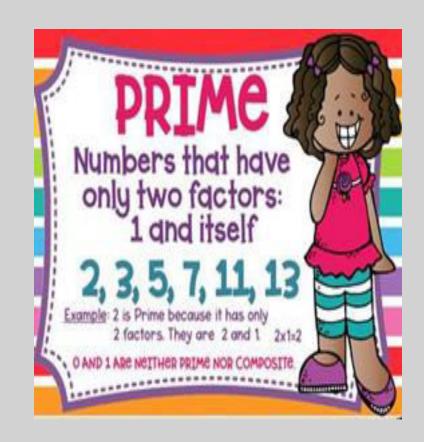
Gunakan induksi kuat untuk membuktikan bahwa setiap bilangan asli n ≥ 2 adalah bil. prima atau merupakan hasil kali bil. prima.

### **Bukti:**

Misal P(n): setiap bil. asli  $n \ge 2$  adalah bil. prima atau merupakan hasil kali bil. prima.

#### **Basis Induksi**

Untuk n = 2, P(2) benar karena 2 bilangan prima.



### Langkah Induksi

Andaikan P(2), P(3), P(4), ..., P(n) benar (Hipotesis Induksi), artinya untuk semua bilangan asli (2,3,4, ..., n) merupakan bil. prima atau merupakan hasil kali prima. Akan ditunjukkan

n+1 juga merupakan bil. prima atau hasil kali prima.

Ada dua kemungkinan:

Jika n+1 prima, maka jelas P(n+1) benar.

Jika n+1 bukan prima, maka n+1 dapat difaktorkan yaitu:

n + 1 = ab, dengan a,b €  $\mathbf{Z}$  yang memenuhi 2 ≤ a, b < n + 1 ≤ n

Berdasarkan Hipotesis Induksi, a dan b prima atau hasil kali prima sehingga n+1 merupakan hasil kali prima. Jadi P(n+1) benar untuk setiap bilangan asli  $n \ge 2$ .

Karena P(1) dan P(n+1) benar, maka P(n) benar untuk setiap bil. asli  $n \ge 2$  (terbukti).

#### **ILUSTRASI**

• Misal *a* dan *b* prima, tulis:

$$a=p_1$$
 
$$b=p_2, \qquad p_i \ {
m prima}$$
 maka  $n+1=a$  .  $b=p_1$  .  $p_2$  (hasil kali prima)

• Misal *a* dan *b* hasil kali prima, tulis:

$$a=p_{11}p_{12}\dots p_{1n}$$
 
$$b=p_{21}p_{22}\dots p_{2n}$$
 maka  $n+1=a$ .  $b=p_1$ .  $p_2=(p_{11}p_{12}\dots p_{1n})(p_{21}p_{22}\dots p_{2n})$ 

-→ (hasil kali prima)



shutterstock.com - 437862145

# Contoh 2

Gunakan prinsip induksi kuat untuk membuktikan bahwa untuk menyelesaikan suatu puzzle dengan n potongan diperlukan n-1 langkah

#### **Bukti:**

Misal P(n): untuk menyelesaikan suatu puzzle dengan n potongan diperlukan n – 1 langkah

#### **Basis Induksi**

Untuk puzzle dengan 1 potongan tidak diperlukan langkah untuk menyelesaikannya.

Jadi P(1) benar.



### Langkah Induksi

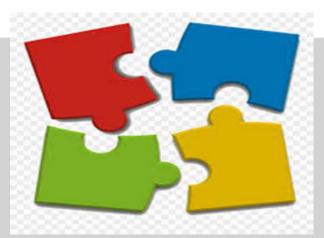
Andaikan P(1), P(2), P(3), ..., P(n) benar (Hipotesis Induksi).

Artinya untuk menyelesaikan puzzle dengan  $n_0 = 1,2,3, ...,$ n potongan diperlukan n – 1 langkah.

Akan ditunjukkan bahwa puzzle dengan n + 1 potongan memerlukan n langkah untuk menyelesaikannya.

Bagi n + 1 potongan menjadi dua bagian yaitu n<sub>1</sub> dan n<sub>2</sub> sehingga

$$n+1=n_1+n_2$$





### Berdasarkan Hipotesis Induksi untuk menyelesaikan puzzle dengan

n<sub>1</sub> potongan diperlukan n<sub>1</sub> – 1 langkah

 $n_2$  potongan diperlukan  $n_2 - 1$  langkah.

Apabila kedua langkah tersebut digabungkan dengan satu langkah terakhir untuk menyatukannya maka diperoleh:

$$(n_1-1) + (n_2-1) + 1 = (n_1+n_2) - 2 + 1$$
  
=  $(n+1) - 1$ 

Jadi P(n + 1) benar untuk semua  $n \ge 1$ .

### Kesimpulan:

karena P(1) dan P(n + 1) benar untuk semua  $n \ge 1$  maka P(n) benar untuk setiap bil. positif n.

Dengan kata lain, untuk menyelesaikan puzzle dengan n potongan diperlukan n – 1 Langkah.

# Contoh 3

Buktikan dengan induksi kuat bahwa pernyataan untuk membayar biaya pos sebesar n sen (n ≥ 8) selalu dapat digunakan perangko 3 sen dan atau perangko 5 sen saja benar.



# Bentuk Induksi Secara Umum

Definisi: Terurut dengan baik (well ordering principle)

Relasi biner "<" pada himpunan R dikatakan terurut dengan baik jika:

- 1. Diketahui  $x, y, z \in R, x < y \ dan \ y < z, \ maka \ x < z$ ; (sifat transitif);
- 2. Diketahui  $x, y, z \in R, x < y$  atau y < x atau x = y (sifat trikotomi);
- 3. Jika A himpunan bagian tidak kosong dari R, terdapat elemen  $x \in A$  sedemikian sehingga  $x \leq y$  untuk semua  $y \in A$ .

Dengan kata lain, setiap himpunan bagian tidak kosong R memuat elemen terkecil.

# Induksi Secara Umum

### Definisi 1.2: Induksi secara umum

Misal: *X* terurut dengan baik oleh " < ".

P(x) adalah pernyataan perihal elemen x dari X.

Untuk membuktikan P(x) benar untuk semua  $x \in X$ , cukup ditunjukkan:

- 1.  $P(x_0)$  benar, dengan  $x_0$  adalah elemen terkecil dalam X,
- 2. jika P(y) benar untuk y < x, maka P(x) juga benar untuk setiap  $x > x_0$  dalam X,

sehingga P(x) benar untuk semua  $x \in X$ .

# Contoh 1

Perhatikan barisan bilangan bulat yang didefinisikan sebagai berikut:

$$S_{m,n} = \begin{cases} 0 & \text{jika } m = 0 \text{ dan } n = 0 \\ S_{m-1,n} + 1 & \text{jika } n = 0 \\ S_{m,n-1} + 1 & \text{jika } n \neq 0 \end{cases}$$

Buktikan dengan induksi matematik, bahwa untuk pasangan tak negatif m dan n, berlaku  $S_{m,n} = m + n$ .

### **Bukti:**

Misalkan P(x) adalah pernyataan yang berkaitan dengan  $S_{m,n}$  yang didefinisikan pada soal di atas.

### Basis Induksi:

 $x_0 = (0,0)$  adalah elemen terkecil di dalam X, sehingga  $P(x_0) = S_{0,0}$ .

 $S_{0,0} = 0 + 0 = 0$ , sedangkan berdasarkan definisi  $S_{0,0} = 0$ .

Jadi  $P(x_0)$  benar.

### Langkah Induksi:

Misalkan  $P(y) = S_{m',n'}$  dan  $P(x) = S_{m,n}$ .

Andaikan  $S_{m',n'} = m' + n'$  benar untuk semua (m',n') < (m,n) (*Hipotesis Induksi*).

Akan dibuktikan bahwa  $S_{m,n} = m + n$  juga benar untuk semua (m,n) > (0,0) di

X. Dengan kata lain, berdasarkan definisi di atas akan ditunjukkan bahwa  $S_{m,n} = m + n$ , baik untuk n = 0 atau  $n \neq 0$ .

#### **Kasus I:**

Jika n = 0, maka dari definisi  $S_{m,n} = S_{m-1,n} + 1$ .

Karena (m-1,n) < (m,n) maka dari hipotesis induksi  $S_{m-1,n} = (m-1)+n$ ,

sehingga  $S_{m,n} = S_{m-1,n} + 1 = (m-1) + n + 1 = m + n$ . Jadi  $S_{m,n} = P(x)$  benar.

#### **Kasus II:**

Jika  $n \neq 0$ , maka dari definisi  $S_{m,n} = S_{m,n-1} + 1$ .

Karena (m, n-1) < (m, n) maka dari hipotesis induksi  $S_{m,n-1} = m + (n-1)$ ,

sehingga  $S_{m,n} = S_{m,n-1} + 1 = m + (n-1) + 1 = m + n$ . Jadi  $S_{m,n} = P(x)$  benar.

Dari kasus I dan II disimpulkan bahwa  $S_{m,n}=m+n$  benar untuk (m,n) di X.

### **Kesimpulan:**

Karena  $P(x_0) = S_{0,0}$  dan  $P(x) = S_{m,n}$  benar maka terbukti bahwa  $S_{m,n} = m + n$  benar untuk semua pasangan tak negatif m dan n.

## **Latihan 1.14:**

Perhatikan barisan bilangan yang didefinisikan sebagai berikut:

$$S_{m,n} = \begin{cases} S_{1,1} = 5 \\ S_{m-1,n} + 2 \text{ jika } n = 1 \\ S_{m,n-1} + 2 \text{ jika } n \neq 1 \end{cases}$$

Buktikan dengan induksi matematika bahwa untuk semua pasangan bilangan bulat positif (m, n) berlaku  $S_{m,n} = 2(m+n)+1$ .



#### DAFTAR PUSTAKA

- Balakrishnan, V.K. (1991). Introductory Discrete Mathematics. New Jersey: Prentice-Hall, Inc.
- Bartle, Robert G. & Sherbert, Donald R. (2000). Introduction to Real Analysis. Singapore: John Wiley & Sons (Asia) Pte Ltd.
- Cupillari, Antonella (2005). The Nuts and Bolts of Proofs (Third Edition). Burlington, MA.: Elsevier Academic Press.
- Goodaire, Edgar G. & Parmenter, Michael M. (1998). Discrete Mathematics with Graph Theory. New Jersey: Prentice-Hall, Inc.
- Kolman, Bernard & Busby, Robert C. (1987). Discrete Mathematical Structures for Computer Science. Second Edition. New Jersey: Prentice-Hall, Inc.
- Munir, Rinaldi. (2012). Matematika Diskrit (Revisi ke-5). Bandung: Penerbit Informatika.
- Sollow, Daniel (1990). How to Read & Do Proofs: An Introduction to Mathematical Thought Processes. New York: John Wiley & Sons.
- Velleman, Daniel J. (2006). How to Prove It. Cambridge, U.K. Cambridge University Press: